
Representations of coherent states in non-orthogonal bases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 4407

(http://iopscience.iop.org/0305-4470/37/15/009)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 02/06/2010 at 17:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 4407–4422 PII: S0305-4470(04)73005-X

Representations of coherent states in non-orthogonal
bases

S Twareque Ali1, R Roknizadeh2 and M K Tavassoly2

1 Department of Mathematics and Statistics, Concordia University, Montréal, Québec,
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Abstract
Starting with the canonical coherent states, we demonstrate that all the so-called
nonlinear coherent states, used in the physical literature, as well as large classes
of other generalized coherent states, can be obtained by changes of bases in
the underlying Hilbert space. This observation leads to an interesting duality
between pairs of generalized coherent states, bringing into play a Gelfand
triple of (rigged) Hilbert spaces. Moreover, it is shown that in each dual
pair of families of nonlinear coherent states, at least one family is related to
a (generally) non-unitary projective representation of the Weyl–Heisenberg
group, which can then be thought of as characterizing the dual pair.

PACS numbers: 42.50.Ar, 03.65.Fd

1. Introduction

We begin with the well-known canonical coherent states (CCS), |z〉. In the physical literature
(see, e.g., Ali et al 2000, Klauder and Skagerstam 1985, Perelomov 1986), these are written
in terms of the so-called Fock basis |n〉, n = 0, 1, 2, . . . ,∞ (or number states):

|z〉 = N (|z|2)−1/2
∞∑

n=0

zn

√
n!

|n〉 ∀z ∈ C (1.1)

where the normalization constant, N (|z|2) = ez2
, is chosen so as to ensure that 〈z|z〉 = 1. The

basis vectors |n〉 are orthonormal in the underlying Hilbert space, often termed a Fock space.
However, in this paper we shall use a somewhat more general notation and write

|z〉 = ηz = N (|z|2)−1/2
∞∑

n=0

zn

√
n!

φn ∀z ∈ C (1.2)

defined as vectors in an abstract (complex, separable) Hilbert space H, for which the vectors
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φn form an orthonormal basis:

〈φn|φm〉H = δnm n,m = 0, 1, 2, . . . ,∞. (1.3)

The so-called nonlinear coherent states are then defined (see, e.g., Man’ko et al 1997)
by replacing the n! in the denominator following the summation sign in (1.2) by xn! :=
x1x2x3 · · · xn, where x1, x2, x3, . . . , is a sequence of nonzero positive numbers and, by
convention, x0! = 1. Thus, one obtains the vectors

ηnl
z = Nnl(|z|2)−1/2

∞∑
n=0

zn

√
xn!

φn (1.4)

where again Nnl(|z|2) is an appropriate normalizing constant. Of course, these are only
defined for z ∈ D, where D is the open domain in the complex plane defined by |z| < L, with
L2 = limn→∞ xn (provided, of course, that this limit exists and is nonzero). It is our intention
to prove in this paper that such a family of nonlinear coherent states can be obtained via a
linear transformation on the Hilbert space H, which will amount to replacing the orthonormal
set {φn}∞n=0 by, in general, a non-orthogonal basis. Under appropriate restrictions, the inverse
transformation leads to a dual family of nonlinear coherent states. This duality is related to a
Gelfand triple (Gelfand and Vilenkin 1964) of (rigged) Hilbert spaces. Furthermore, just as
the canonical coherent states (1.2) can also be defined as the orbit of a single vector under a
projective, unitary representation of the Weyl–Heisenberg group:

ηz = D(z)φ0 D(z) = eza−za†
(1.5)

it will emerge that in a dual pair of families of nonlinear coherent states, at least one family
is the orbit of a projective, non-unitary representation of this same group. It will also be
demonstrated, in particular, that the well-known photon-added states (Agarwal and Tara 1991,
Roy and Mehta 1995) and the binomial states (Fu et al 2000) can also be obtained by such
a linear transformation on H. However, in these two cases, the nonlinear coherent states
constructed using the resulting non-orthogonal bases, again turn out to be canonical coherent
states and indeed, it is possible to characterize a fairly general class of transformations under
which such a situation prevails.

It ought to be mentioned at this point that the fact that nonlinear coherent states are related
to a choice of a new scalar product on the Hilbert space, has been observed before (Beckers
et al 2001, Man’ko et al 1997). Similarly, the existence of a generalized displacement like
operator, related to nonlinear coherent states, has been studied earlier (Roy and Roy 2000).
However, we unify all these concepts by a systematic application of a certain class of linear
transformations on the underlying Hilbert space. The resultant appearance of a duality among
families of nonlinear coherent states and of a Gelfand triple in this context, as well as the
connection with non-unitary representations of the Weyl–Heisenberg group, has apparently
not been noticed before.

2. The general setting

The primary object for this discussion will be an abstract Hilbert space H. Let T be an operator
on this space with the properties

(1) T is densely defined and closed; we denote its domain by D(T ).
(2) T −1 exists and is densely defined, with domain D(T −1).
(3) The vectors φn ∈ D(T ) ∩ D(T −1) for all n and there exist non-empty open sets DT and

DT −1 in C such that ηz ∈ D(T ),∀z ∈ DT and ηz ∈ D(T −1),∀z ∈ DT −1 .

Note that condition (1) implies that the operator T ∗T = F is self-adjoint.
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Let

φF
n := T −1φn φF−1

n := T φn n = 0, 1, 2, . . . ,∞ (2.1)

we define the two new Hilbert spaces:

(1) HF , which is the completion of the set D(T ) in the scalar product

〈f |g〉F = 〈f |T ∗T g〉H = 〈f |Fg〉H. (2.2)

The set
{
φF

n

}
is orthonormal in HF and the map φ 
−→ T −1φ, φ ∈ D(T −1) extends to a

unitary map between H and HF . If both T and T −1 are bounded, HF coincides with H as
a set. If T −1 is bounded, but T is unbounded, so that the spectrum of F is bounded away
from zero, then HF coincides with D(T ) as a set.

(2) HF−1 , which is the completion of D(T ∗−1) in the scalar product

〈f |g〉F−1 = 〈f |T −1T ∗−1g〉H = 〈f |F−1g〉H. (2.3)

The set
{
φF−1

n

}
is orthonormal in HF−1 and the map φ 
−→ T φ, φ ∈ D(T ) extends to a

unitary map between H and HF−1 . If the spectrum of F is bounded away from zero; then
F−1 is bounded and one has the inclusions

HF ⊂ H ⊂ HF−1 . (2.4)

We shall refer to the spaces HF and HF−1 as a dual pair and when (2.4) is satisfied, the
three spaces HF ,H and HF−1 will be called a Gelfand triple (Gelfand and Vilenkin 1964).
(Actually, this is a rather simple example of a Gelfand triple, consisting only of a triplet of
Hilbert spaces (Antoine et al 2002).)

Let B be a (densely defined) operator on H and B† its adjoint on this Hilbert space.
Assume that D(B) ⊂ D(F ). Then unless [B,F ] = 0, the adjoint of B, considered as an
operator on HF and which we denote by B∗

F , is different from B†. Indeed,

〈f |Bg〉F = 〈f |FBg〉H = 〈B†Ff |g〉H = 〈FF−1B†Ff |g〉H
= 〈F−1B†Ff |Fg〉H = 〈F−1B†Ff |g〉F ∀f, g ∈ D(F ).

Thus

B∗
F = F−1B†F.

On H we take the operators a, a†, N = a†a:

aφn = √
nφn−1 a†φn =

√
n + 1φn+1 Nφn = nφn. (2.5)

These operators satisfy

[a, a†] = 1 [a,N ] = a [a†, N] = −a†. (2.6)

On HF we have the transformed operators:

aF = T −1aT a
†
F = T −1a†T NF = T −1NT. (2.7)

These operators satisfy the same commutation relations as a, a† and N:[
aF , a

†
F

] = 1 [aF ,NF ] = aF

[
a
†
F ,NF

] = −a
†
F . (2.8)

Also on HF

aF φF
n = √

nφn−1 a
†
F φF

n =
√

n + 1φF
n+1 NF φF

n = nφF
n . (2.9)

Clearly, considered as operators on HF , aF and a
†
F are adjoints of each other and indeed they

are just the unitary transforms on HF of the operators a and a† on H. On the other hand, if
we take the operator aF , let it act on H and look for its adjoint on H under this action, we



4410 S T Ali et al

obtain by (2.7) the operator a� = T ∗a†T ∗−1 which, in general, is different from a
†
F and also

[aF , a�] �= I , in general. In an analogous manner, we shall define the corresponding operators
a

F−1 , a
†
F−1 , etc, on HF−1 .

We thus obtain three unitarily equivalent sets of operators: a, a†, N , defined on H, aF ,

a
†
F ,NF , defined on HF and a

F−1 , a
†
F−1 , NF−1 defined on HF−1 . On their respective Hilbert

spaces, they define under commutation the standard oscillator Lie algebra. On the other hand,
if they are all considered as operators on H, the algebra generated by them and their adjoints
on H (under commutation) is, in general, very different from the oscillator algebra and could
even be an infinite dimensional Lie algebra.

Writing A = aF ,A† = a�, both considered as operators on H, if they satisfy the relation

AA† − λA†A = C(N) (2.10)

where λ ∈ R
+
∗ is a constant and C(N) is a function of the operator N, then the three operators A,

A†,H = 1
2 (AA† + A†A) are said to generate a generalized oscillator algebra or deformed

oscillator algebra (Borzov et al 1997). Note that on H, A and A† are adjoints of each other.

3. Construction of coherent states

Consider the vectors

ηF
z = T −1ηz = N (|z|2)−1/2

∞∑
n=0

zn

√
n!

φF
n (3.1)

on HF . These are the images of the ηz in HF and are the normalized canonical coherent states
on this Hilbert space (recall that the vectors φF

n are orthonormal in HF ). Similarly, define the
vectors

ηF−1

z = T ηz = N (|z|2)−1/2
∞∑

n=0

zn

√
n!

φF−1

n (3.2)

as the CCS ηz unitarily transported from H to HF−1 .
We would now like to consider the ηF

z as being vectors in H and similarly the vectors
ηF−1

z also as vectors in H. To what extent can we then call them (generalized) coherent states?
Specifically, we would like to find an orthonormal basis {ψn}∞n=0 in H and a transformation
w = f (z) of the complex plane to itself such that:

(a) we could write

ηF
z = ζw = N ′(|w|2)−1/2�(w)

∞∑
n=0

wn

√
[xn!]

ψn (3.3)

where N ′ is a new normalization constant, �(w) is a phase factor and {xn}∞n=1 is a
sequence of nonzero positive numbers, to be determined;

(b) there should exist a measure dλ(ρ) on R
+, such that with respect to the measure

dµ(w,w) = dλ(ρ) dϑ (where w = ρeiϑ ) the resolution of the identity,∫
D

|ζw〉〈ζw|N ′(|w|2) dµ(w,w) = I (3.4)

would hold on H (as is the case with the canonical coherent states). Here again, D is the
domain of the complex plane, D = {w ∈ C | |w| < L}, where L2 = limn→∞ xn.
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A general answer to the above question may be hard to find. But we present below several
classes of examples, all physically motivated, for which the above construction can be carried
out. These include in particular all the so-called nonlinear, deformed and squeezed coherent
states, which appear so abundantly in the quantum optical and physical literature (see, for
example, Man’ko et al 1997, Odzijewicz 1998, Simon et al 1988).

Whenever the two sets of vectors
{
ηF

z

}
and

{
ηF−1

z

}
form coherent state families in the

above sense, we shall call them a dual pair.

4. Examples of the general construction

4.1. Example 1. Photon-added and binomial states as bases

Let T be an operator such that T −1 has the form

T −1 = eλa†
G(a) (4.1)

where λ ∈ R and G(a) is a function of the operator a such that T and T −1 satisfy the postulated
conditions (1)–(3) of section 2. (The operator G(a) could, for example, be defined by taking
an entire analytic function G(z) with real coefficients and nonzero in the finite plane, and then
setting G(a)ηz = G(z)ηz for all z ∈ C.) It is easily verified that

eλa†
a = (a − λI) eλa†

eλaa† = (a† + λI) eλa (4.2)

so that

eλa†
G(a) = G(a − λI) eλa†

. (4.3)

From this we compute the two transformed operators aF and a
†
F on HF (F = T ∗T =

e−λaG(a†)−1G(a)−1 e−λa†
) to be

aF = T −1aT = a − λI a
†
F = T −1a†T = G(a − λI)a†G(a − λI)−1. (4.4)

Thus, since a commutes with G(a − λI), we obtain[
aF , a

†
F

] = G(a − λI)[a, a†]G(a − λI)−1 = I

as expected. The two operators A = aF and A† = T ∗a†T ∗−1
, defined on H, are

A = a − λI A† = a† − λI (4.5)

which of course are adjoints of each other. Moreover, in this case

[A,A†] = I (4.6)

so that the oscillator algebra remains unchanged.
Since, by (4.2),

a e−λa† = e−λa†
(a − λI)

we see that

T = G(a)−1 e−λa† = e−λa†
G(a − λI)−1. (4.7)

Thus we obtain the corresponding operators

aF−1 = T aT −1 = a + λI a
†
F−1 = T a†T −1 = G(a)−1a†G(a) (4.8)

on HF−1 . Once again we obtain
[
a

F−1 , a
†
F−1

] = I and similarly for the operator A′ = a
F−1 =

a + λI and its adjoint A′† = a† + λI on H.
We now define the vectors

φF
n = T −1φn = eλa†

G(a)φn (4.9)



4412 S T Ali et al

which form an orthonormal set in HF , and build the corresponding canonical coherent states

ηF
z = N (|z|2)−1/2

∞∑
n=0

zn

√
n!

φF
n = eλa†

G(a)ηz (4.10)

on HF . Considering these as vectors in H, and taking account of the fact that

a eλa†
G(a) = eλa†

G(a)(a + λI)

we see that

aηF
z = (z + λ)ηF

z . (4.11)

Thus, up to a constant factor, ηF
z is just the canonical coherent state on H corresponding to the

point (z + λ) ∈ C (note that since the canonical coherent states can be obtained as solutions to
a first-order differential equation, (x + d/dx)ηz = zηz, the solution is unique, up to a constant,
for each z ∈ C, i.e., to each z ∈ C, there corresponds exactly one vector η such that aη = zη).
We write, therefore,

ηF
z = C(λ, z)

∞∑
n=0

(z + λ)n√
n!

φn

where the constant C(λ, z) can be computed by going back to (4.10). Indeed, we have

ηF
z = eλa†

G(a)ηz = G(z) eλa†
ηz

= G(z) e− |z|2
2 eλa†

eza†
φ0 = G(z) e− |z|2

2 e
|z+λ|2

2 ηz+λ

= G(z) eλ(Re(z)+ λ
2 )ηz+λ.

Thus, we obtain C(λ, z) = G(z) e− |z|2
2 and

ηF
z = G(z) e− |z|2

2

∞∑
n=0

(z + λ)n√
n!

φn = G(z) eλ(Re(z)+ λ
2 )ηz+λ. (4.12)

Comparing (4.12) with (3.3) and writing ηF
z = ζz+λ, we find that w = z + λ, xn = n and

ψn = φn. Furthermore, N ′(|w|2) = e|z|2 |G(z)|−2 and �(w) = ei�(w), where we have written
G(z) = |G(z)| ei�(w). It is remarkable that in this example while ηF

z is written in (4.10) in
terms of a non-orthonormal basis

{
φF

n

}∞
n=0, when these vectors are considered as constituting

a basis for H, its transcription in terms of the orthonormal basis {φn}∞n=0 only involves a shift
in the variable z and no change in the components.

It is now straightforward to write down a resolution of identity, following the pattern of
the canonical coherent states. Indeed, writing w = z + λ = ρ eiθ , we have (on H)∫ ∫

C

|ζw〉〈ζw|N ′(|w|2) dµ(w,w) = I dµ(w,w) = e−ρ2

π
ρ dρ dθ. (4.13)

The dual CS ηF−1

z are obtained by replacing the φF
n in (4.9) by φF−1

n = T φn =
G(a)−1 e−λa†

φn. But since G(a)−1 e−λa† = e−λa†
G(a − λI)−1, we have

φF−1

n = e−λa†
G(a − λI)−1φn. (4.14)

Hence, using the same argument as with the φF
n , we arrive at

ηF−1

z = G(z − λ)−1 e− |z|2
2

∞∑
n=0

(z − λ)n√
n!

φn = G(z − λ)−1 e−λ(Re(z)− λ
2 )ηz−λ. (4.15)
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Thus, in the present case (up to normalization), the dual pair of states ηF
z and ηF−1

z is obtained
simply by replacing λ by −λ.

It is clear now that the above construction can be carried out for any operator T −1 which
satisfies the commutation relation

[a, T −1] = λT −1 λ ∈ R (4.16)

with a.
Two particular cases of the operator T −1 in (4.1) are of special interest. In the first instance

take G(a) = I , so that T −1 = eλa†
. The vectors φF

n = T −1φn may easily be calculated. Indeed
we obtain

φF
n =

∞∑
k=0

(λa†)k

k!
φn = e

λ2

2
a†n

√
n!

ηλ (4.17)

which (up to normalization) are the well-known photon-added coherent states of quantum
optics (Agarwal and Tara 1991, Roy and Mehta 1995). Hence in this case we write φF

n = φ
pa
λ,n.

We denote the corresponding coherent states by η
pa
λ,z and note that

ηF
z := η

pa
λ,z = N (|z|2)− 1

2

∞∑
n=0

zn

√
n!

φ
pa
λ,n = N (|z|2)− 1

2 e
λ2

2 eza†
ηλ

= eλ(x+ λ
2 )ηz+λ (4.18)

where x = Re(z). Clearly if λ −→ 0, then η
pa
λ,z −→ ηz. It ought to be emphasized at this

point, however, that while the vectors φ
pa
λ,n are (up to normalization) photon-added coherent

states, the vectors η
pa
λ,z are just (up to normalization) canonical coherent states. The dual set of

coherent states, ηF−1

z , is obtained by replacing λ by −λ so that the states η
pa
λ,z and η

pa
−λ,z, z ∈ C,

are in duality, and we have the interesting relation〈
η

pa
−λ,z

∣∣ηpa
λ,z

〉
H

= e−λ(λ+2 iy). (4.19)

On HF we have the creation and annihilation operators (see (4.4)),

aF = a − λI a
†
F = a† (4.20)

which are adjoints of each other on HF , but clearly not so on H. However, on H we have the
two operators A and A† as in (4.5):

A = a − λI A† = a† − λI.

As the second particular case of (4.1), we take λ = 0 and G(a) = eµa, µ ∈ R, i.e.,
T −1 = eµa . The basis vectors are now

φF
n = eµaφn =

√
n!

n∑
k=0

µn−k

√
k!(n − k)!

φn = (a† + µI)n√
n!

φ0. (4.21)

These states have also been studied in the quantum optical literature (Fu et al 2000) and in
view of the last expression in (4.21), we shall call them binomial states and write φF

n = φbin
µ,n.

The coherent states, built out of these vectors as basis states, are

ηF
z := ηbin

µ,z = eµaηz = e−|z|2/2
∞∑

n=0

zn

√
n!

φbin
µ,n = eµx−|z|2/2

∞∑
n=0

zn

√
n!

φn. (4.22)

The dual CS are simply ηbin
−µ,z and〈

ηbin
−µ,z

∣∣ηbin
µ,z

〉 = 1. (4.23)
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The creation and annihilation operators on HF are

aF = a a
†
F = a† + λI (4.24)

while the other two operators on H are

A = a A† = a†. (4.25)

The operators (4.24) have been studied, in the context of non-self-adjoint Hamiltonians in
Beckers (1998a, 1998b, 2001). Again, it is remarkable that the coherent states ηbin

µ,z are exactly
the canonical coherent states, ηz, up to a factor.

Before leaving this example, a further point ought to be made in connection with the two
basis sets

{
φ

pa
λ,n

}∞
n=0 and

{
φbin

µ,n

}∞
n=0, consisting of the photon-added coherent states and the

binomial states, respectively. The set
{
φ

pa
λ,n

}∞
n=0 is orthonormal with respect to the operator

Fpa = e−λa e−λa† = eλ2/2 e−√
2λQ (4.26)

where

Q = 1√
2
(a + a†) (4.27)

is the usual position operator. Thus, we have

eλ2/2〈φpa
λ,n

∣∣e−√
2λQφ

pa
λ,m

〉
H

= δmn. (4.28)

The operator e−√
2λQ has an absolutely continuous spectrum ranging from 0 to ∞. On the

other hand, the set
{
φbin

µ,n

}∞
n=0 is orthonormal with respect to the operator

Fbin = e−µa†
e−µa = e−µ2/2 e−√

2µQ (4.29)

so that

e−µ2/2
〈
φbin

µ,n

∣∣e−√
2µQφbin

µ,m

〉
H

= δmn. (4.30)

Since for λ = µ, eλ2
Fbin = Fpa, i.e., the two operators only differ by a constant, the vectors

φ
pa
λ,n and φbin

λ,n, n = 0, 1, 2, . . . , must be unitarily related, up to a constant. Indeed, since in
this case,

φ
pa
λ,n = eλa†

φn and φbin
λ,n = eλaφn

we easily obtain

φ
pa
λ,n = eλ2/2V φbin

λ,n n = 0, 1, 2, . . . (4.31)

where V is the unitary operator

V = e−i
√

2λP P = a − a†

i
√

2
. (4.32)

Finally, note also that since (e−λa†
)† = (eλa)−1, the two sets of vectors

{
φ

pa
−λ,n

}∞
n=0 and{

φbin
λ,n

}∞
n=0 constitute dual bases for H:〈

φ
pa
−λ,m

∣∣φbin
λ,n

〉 = δmn. (4.33)

It should be emphasized however, that neither one of the two sets of vectors is an orthonormal
basis of H.
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4.2. Example 2. Rescaled basis states and nonlinear CS

For the next general class of examples, let the operator T −1 have the form

T −1 := T (N)−1 =
∞∑

n=0

1

t (n)
|φn〉〈φn| (4.34)

where the t (n) are real numbers, having the properties:

(1) t (0) = 1 and t (n) = t (n′) if and only if n = n′;
(2) 0 < t(n) < ∞;
(3) the finiteness condition for the limit

lim
n→∞

[
t (n)

t (n + 1)

]2 1

n + 1
= ρ < ∞ (4.35)

holds.

This last condition implies that the series
∞∑

n=0

r2n

[t (n)]2n!
:= S(r2) (4.36)

converges for all r < L = 1/
√

ρ. The operators T and F are now

T := T (N) =
∞∑

n=0

t (n)|φn〉〈φn| F := F(N) =
∞∑

n=0

t (n)2|φn〉〈φn|. (4.37)

Let us define a new operator, f (N), by its action on the basis vectors

f (N)φn := t (n)

t (n − 1)
φn = f (n)φn (4.38)

then

t (n) = f (n)f (n − 1) · · · f (1) := f (n)!. (4.39)

Thus we have the transformed, non-orthogonal basis vectors

φF
n = 1

t (n)
φn = 1

f (n)!
φn (4.40)

so that if ψ = ∑∞
n=0 cnφn and ψ ′ = ∑∞

n=0 c′
nφn are vectors in H which lie in the domain of

T −1, then their scalar product in HF is

〈ψ |ψ ′〉F =
∞∑

n=0

cnc
′
n

[f (n)!]2
.

We shall call the vectors (4.40) rescaled basis states.
The coherent states ηF

z are now

ηF
z = N (|z|2)−1/2

∞∑
n=0

zn

√
n!

φF
n (4.41)

which, as vectors in HF , are well defined and normalized for all z ∈ C. However, when
considered as vectors in H and rewritten as

ηF
z = N (|z|2)−1/2

∞∑
n=0

znφn

f (n)!
√

n!
(4.42)
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they are no longer normalized and defined only on the domain (see (4.35) and (4.36)),

D =
{

z ∈ C

∣∣∣∣∣|z| < L = 1

ρ

}
. (4.43)

The operators aF and a
†
F act on the vectors φF

n as

aF φF
n = √

nφF
n−1 a

†
F φF

n =
√

n + 1φF
n+1. (4.44)

The operator A = aF , considered as an operator on H, and its adjoint A† on H act on the
original basis vectors φn in the manner

Aφn = f (n)
√

nφn−1 A†φn = f (n + 1)
√

n + 1φn+1 (4.45)

and thus, we may write, in an obvious notation,

A = af (N) A† = f (N)a† (4.46)

as operators on H.
Thus, up to normalization, the CS defined in (4.42) are the well-known nonlinear coherent

states of quantum optics (Man’ko et al 1997).
As a specific physical example of such a family of coherent states, we might mention

the function f (n) = L(0)
n (η2)

[
(n + 1)L(0)

n (η2)
]−1

, where Lm
n (x) are generalized Laguerre

polynomials and η is the so-called Lamb–Dicke parameter. These states appear as the
stationary states of the centre of mass motion of a trapped and bichromatically laser driven
ion, far from the Lamb–Dicke regime (Filho et al 1996).

The dual coherent states ηF−1

z , as vectors in the Hilbert space HF−1 , will be well-defined
vectors in H only if

lim
n→∞

[
t (n + 1)

t (n)

]2 1

n + 1
= ρ̃ < ∞. (4.47)

In this case we have

ηF−1

z = N (|z|2)−1/2
∞∑

n=0

f (n)!zn

√
n!

φn (4.48)

and they are defined (as vectors in H) on the domain

D̃ =
{

z ∈ C

∣∣∣∣∣|z| < L̃ = 1√
ρ̃

}
. (4.49)

Equations (4.48) and (4.49) should be compared to (4.42) and (4.43). We also have〈
ηF−1

z

∣∣ηF
z

〉
H

= 1 (4.50)

for all z ∈ D ∩ D̃.
A resolution of the identity of H can be obtained in terms of the vectors ηF

z (or ηF−1

z ) by
solving a moment problem. Thus, for example, for the vectors (4.42) to satisfy∫ ∫

D

∣∣ηF
z

〉〈
ηF

z

∣∣N (|z|2) dµ(z, z̄) = I (4.51)

where dµ(z, z̄) = dλ(r) dθ (z = r eiθ ), the measure dλ must satisfy the moment conditions∫ L

0
r2n dλ(r) = [f (n)!]2 n!

2π
n = 0, 1, 2, . . . . (4.52)

As is well known, the most nonclassical features of nonlinear coherent states lie in their
squeezing, antibunching and sub-Poissonian properties, which all depend crucially on the
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choice of the nonlinearity function. These properties have been studied for nonlinear coherent
states of the dual type (4.48) in Roy and Roy (2000).

A highly instructive example of the duality between families of nonlinear coherent states
is provided by the Gilmore–Perelomov (Gilmore 1974) and Barut–Girardello (Barut and
Girardello 1971) coherent states, defined for the discrete series representations of the group
SU(1, 1). The Gilmore–Perelomov coherent states can be defined on H as

ηGP
z = NGP(|z|2)−1/2

∞∑
n=0

√
(2κ + n − 1)!

n!
znφn (4.53)

where NGP is a normalization factor, chosen so that
∣∣∣∣ηGP

z

∣∣∣∣2
H

= 1, and the parameter
κ = 1, 3/2, 2, 5/2, . . . , labels the SU(1, 1) representation being used. These coherent states
are defined on the open unit disc, |z| < 1. The Barut–Girardello coherent states, on the other
hand, can be defined (again on H) as the vectors

ηBG
z = NBG(|z|2)−1/2

∞∑
n=0

zn

√
n!(2κ + n − 1)!

φn z ∈ C (4.54)

where, once more, NBG is chosen so that
∣∣∣∣ηBG

z

∣∣∣∣2 = 1. It is now immediately clear that the
operator

T (N) =
∑
n=0

1√
(2κ + n − 1)!

|φn〉〈φn| (4.55)

acts in the manner

ηBG
z = λ1T (N)ηz and ηGP

z = λ2T (N)−1ηz (4.56)

where λ1 and λ2 are constants, thus demonstrating the relation of duality between the two sets
of coherent states.

A large class of dual pairs of the above type can be constructed by starting with the
hypergeometric function,

pFq(α1, α2, . . . , αp;β1, β2, . . . , βq; x) =
∞∑

n=0

(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βq)n

xn

n!
(4.57)

where the αi and βi are positive real numbers, q is an arbitrary positive integer and p
is restricted by q − 1 � p � q + 1. (Here (γ )n is the usual Pochhammer symbol,
(γ )n = γ (γ + 1)(γ + 2) · · · (γ + n − 1) = �(γ + n)/�(γ ).) This series converges for
all x ∈ R if p = q and for all |x| < 1 if p = q + 1. Then, going back to the canonical coherent
states on H, we apply to them the operators

T := T (N) =
∞∑

n=0

[
(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βq)n

] 1
2

|φn〉〈φn|
(4.58)

T −1 := T (N)−1 =
∞∑

n=0

[
(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βq)n

]− 1
2

|φn〉〈φn|.

It is then evident that the corresponding families of coherent states
{
ηF

z

}
and

{
ηF−1

z

}
will be

in duality. (Actually, it may be necessary to impose additional restrictions on the αi and βi ,
in order to ensure that the coherent states

{
ηF

z

}
and

{
ηF−1

z

}
, when defined on H, satisfy a

resolution of the identity (Appl and Schiller 2003).)
To conclude this example, we note that from the manner in which the operators T and

T −1 are defined, for the rescaled basis states (see (4.34) and (4.37)), we can always arrange to
be in one of the following two situations:
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(1) both T and T −1 are bounded;
(2) T is unbounded but T −1 is bounded.

In both cases, (2.4) holds, so that we always have a Gelfand triple.

4.3. Example 3. Squeezed bases

Our next example involves the use of squeezed states and squeezed bases (see, for example,
Ali et al 2000, Simon et al 1988). Consider the symplectic group, Sp(2, R), consisting of
2 × 2 real matrices M satisfying

MβMT = β β =
(

0 1
−1 0

)
. (4.59)

(Note that these matrices can also be characterized by the simple condition, det M = 1, i.e.,
Sp(2, R) is identical with the group SL(2, R), of 2 × 2 real matrices of determinant one.) An
element M ∈ Sp(2, R) has the well-known decomposition (Sugiura 1990)

M =
(

1 0
−v 1

) (
u− 1

2 0

0 u
1
2

) (
cos θ −sin θ

−sin θ cos θ

)
(4.60)

with v ∈ R, u > 0, 0 < θ � 2π . We shall also write

M(u, v) =
(

1 0
−v 1

)(
u− 1

2 0

0 u
1
2

)
=

(
u− 1

2 0

−vu− 1
2 u

1
2

)
. (4.61)

Next, writing z = 1√
2
(q − ip), we introduce the vector x and the vector operator X:

x =
(

q

p

)
X =

(
Q

P

)
(4.62)

where Q and P are the position and momentum operators defined in (4.27) and (4.32),
respectively. In terms of these quantities the canonical coherent states (1.2) can be rewritten
as

ηx := ηz = U(x)φ0 where U(x) = exp[−ixT βX] (4.63)

and U(x) is unitary on H. If
(Q′

P ′
) = MX, M ∈ Sp(2, R), then since [Q′, P ′] = [Q,P ] = iI ,

there exists a unitary operator U(M) on H such that (with a slight abuse of notation)

U(M)XU(M)† = M−1X and U(M)U(x)U(M)† = U(Mx). (4.64)

Taking H = L2(R, dx) and φ0 = π− 1
4 e− x2

2 , the states

ηu,v
x = U(x)U(M(u, v))φ0(
ηu,v

x

)
(x) =

[ u

π

] 1
4

exp
(

i
(
x − q

2

)
p
)

exp

(
−1

2
(x − q)(u + iv)(x − q)

)
(4.65)

are generalized Gaussians and for v = 0, u = 1
s2 these are squeezed states.

For fixed M(u, v) ∈ Sp(2, R), let T −1 = U(M(u, v)) and set φu,v
n = φF

n =
U(M(u, v))φn. We call the resulting basis a squeezed basis. Then

ηF
z = e− |z|2

2

∞∑
n=0

zn

√
n!

φu,v
n (4.66)
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and since by (4.64),

U(M(u, v))U(x) = U(M(u, v))U(x)U(M(u, v))†U(M(u, v))

= U(Mx)U(M(u, v))

we obtain

ηF
z = η

u,v
x′ where x′ = M(u, v)x. (4.67)

Thus, squeezing the basis results in squeezing the coherent states. The dual family of coherent
states consists of the vectors η

1/u,−v

x′′ , with x′′ = M(1/u,−v)x. Since U(M(u, v)) is unitary
on H, the algebra generated by the operators A and A† is the same as that generated by a
and a†.

5. Some operator algebras

In this section we take a closer look at the two sets of operators aF , a
†
F and aF−1 , a

†
F−1 and the

algebras generated by them (under commutation), in the special case when the operators T
and F have the forms given in (4.37). Note that both T and F are positive operators. As noted
earlier, on the Hilbert space HF the operators aF , a

†
F are adjoints of each other and satisfy the

commutation relation
[
aF , a

†
F

] = I , while on the Hilbert space HF−1 the operators aF−1 , a
†
F−1

are mutual adjoints, satisfying
[
aF−1 , a

†
F−1

] = I . As before, let us write A = aF , when this
operator acts on H and similarly we write A′ = aF−1 to denote the action of aF−1 on H. Since
aF = T −1aT and a

†
F−1 = T a†T −1 and since T and T −1 are positive operators, we have for

the adjoint of A on H,

A† = T a†T −1 = a
†
F−1 (5.1)

and similarly, for the adjoint of A′ on H we have

A′† = T −1a†T = a
†
F . (5.2)

Moreover (see (4.46)),

A = af (N) A† = f (N)a† and A′ = af (N)−1 A′† = f (N)−1a† (5.3)

with

[A,A′†] = [A′, A†] = I. (5.4)

In addition, we have the four other easily verifiable commutation relations,

[A,A†] = f (N + 1)2(N + 1) − f (N)2N

[A′, A′†] = f (N + 1)−2(N + 1) − f (N)−2N
(5.5)

[A,A′] = a2[f (N − 1)f (N)−1 − f (N − 1)−1f (N)

[A†, A′†] = [f (N)f (N − 1)−1 − f (N)−1f (N − 1)]a†2.

Consider now the displacement operators on H,

D(z) = eza†−za = U(x) z ∈ C. (5.6)

These operators are unitary on H and in view of the relation

D(z1)D(z2) = ei Im(z1z2)D(z1 + z2) (5.7)

together they realize a unitary projective representation of the Weyl–Heisenberg group on H.
Moreover,

ηz = D(z)φ0 = e− |z|2
2 eza†

φ0. (5.8)
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The unitary images of D(z) on HF and HF−1 are

DF (z) = T −1D(z)T = eza
†
F −zaF and DF−1(z) = T D(z)T −1 = eza

†
F−1 −zaF−1 (5.9)

respectively, again defined for all z ∈ C and realizing unitary projective representations of the
Weyl–Heisenberg group on HF and HF−1 , respectively. Also, just as in (5.8), we have

ηF
z = DF (z)φ0 = e− |z|2

2 eza
†
F φ0 ηF−1

z = DF−1(z)φ0 = e− |z|2
2 eza

†
F−1 φ0. (5.10)

Letting them act on H, we write V (z) and V ′(z) for these two operators, so that using (5.1)
and (5.2), we have

V (z) := DF (z) = ezA′†−zA and V ′(z) := DF−1(z) = ezA†−zA′
(5.11)

operators which have been studied in Roy and Roy (2000). Thus, as operators on H,

V ′(z) = V (−z)† = [V (z)−1]†. (5.12)

However, on H the operator V (z) is only defined for z ∈ D, where D is the domain (4.43),
while V ′(z) is defined for z ∈ D̃ (see (4.49)), so that (5.12) only holds on D ∩ D̃. Also, if
z1, z2, z1 + z2 ∈ D then we have a relation similar to (5.7) for V (z):

V (z1)V (z2) = ei Im(z1z2)V (z1 + z2). (5.13)

Similarly, if z1, z2, z1 + z2 ∈ D̃ then we have for V ′(z) the analogous relation

V ′(z1)V
′(z2) = ei Im(z1z2)V ′(z1 + z2). (5.14)

Thus, if D = C (respectively, D̃ = C) then the operators V (z) (respectively, V ′(z)) define
a non-unitary projective representation of the Weyl–Heisenberg group on H. In the case
where D = D̃ = C, then both V (z) and V ′(z) realize non-unitary representations of the
Weyl–Heisenberg group on H and (5.12) implies that these representations are contragredient
to each other. This could happen, if for example, both T and T −1 are bounded operators.
Another possibility could be when T and T −1 have the forms

T =
∞∑

n=0

(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βp)n
|φn〉〈φn|

(5.15)

T −1 =
∞∑

n=0

[
(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βp)n

]−1

|φn〉〈φn|

for real numbers αj and βj . (This corresponds to taking p = q in (4.57).) But in all cases,
one member of a dual pair gives rise to a non-unitary projective representation of the Weyl–
Heisenberg group. In other words, each dual pair of nonlinear coherent states is characterized
by such a representation.

6. Discussion

Let us make two final comments before ending this paper. First, we note that the general
method which emerges for constructing nonlinear coherent states is to take the two operators
T ,D(z), defined as in (4.37) and (5.6), a fiducial vector φ0, and then to write

ηnl
z = T −1D(z)φ0. (6.1)

The set of values of z for which these vectors are defined then depends on T. The dual family
of nonlinear CS is defined by replacing T −1 by T. The canonical CS form a self-dual family.
The second, and related comment is on whether one could make contact with the type of
coherent states, associated with Hamiltonians with discrete spectra, which were constructed in
Gazeau and Klauder (1999). These latter coherent states, which we shall call Gazeau–Klauder
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coherent states, are parametrized by action and angle variables J, γ and are of the type

|J, γ 〉 = N (J )−
1
2

∞∑
n=0

J
n
2 exp[−iεnγ ]√

εn!
φn (6.2)

where J � 0,−∞ < γ < ∞ and εn > 0, n = 1, 2, 3, . . . , ε0 = 0, are the eigenvalues
(non-degenerate) of some Hamiltonian H, corresponding to the eigenvectors φn. Although it
is possible to find a transformation operator T mapping the canonical coherent states (1.2)—
which can also be considered to be of the Gazeau–Klauder type—to states of the type (6.2),
such an operator would not be of the type considered in this paper, because these operators
lead to the states (3.3), labelled by a complex variable w. The scalar product, 〈ψ |ζw〉, with
respect to an arbitrary vector ψ ∈ H defines, up to a factor N ′(|w|2)− 1

2 �(w), an analytic
function of w over some domain D. This would not be the case if we replaced ζw by |J, γ〉
in this scalar product, except when εn = n for all n. However, it is interesting to study such
transformations generically and we propose to do so in a future publication.
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